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Control of vortex shedding behind circular cylinder for
flows at low Reynolds numbers
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SUMMARY

It has been observed by researchers in the past that vortex shedding behind circular cylinders can be
altered, and in some cases suppressed, over a limited range of Reynolds numbers by proper placement of
a second, much smaller, ‘control’ cylinder in the near wake of the main cylinder. Results are presented
for numerical computations of some such situations. A stabilized finite element method is employed to
solve the incompressible Navier—Stokes equations in the primitive variables formulation. At low
Reynolds numbers, for certain relative positions of the main and control cylinder, the vortex shedding
from the main cylinder is completely suppressed. Excellent agreement is observed between the present
computations and experimental findings of other researchers. In an effort to explain the mechanism of
control of vortex shedding, the streamwise variation of the pressure coefficient close to the shear layer of
the main cylinder is compared for various cases, with and without the control cylinder. In the cases where
the vortex shedding is suppressed, it is observed that the control cylinder provides a local favorable
pressure gradient in the wake region, thereby stabilizing the shear layer locally. Copyright © 2001 John
Wiley & Sons, Ltd.

KEY WORDS: finite element; flow control; two cylinders; unsteady flows; vortex shedding control
cylinder

1. INTRODUCTION

A large number of engineering structures involve bluff bodies that experience unsteady wind
loads which may, in some cases, have a significant influence on their design. Control of vortex
shedding leads to a reduction in the unsteady forces acting on the bluff bodies and can
significantly reduce their vibrations. Flow control may be accomplished by controlling the
boundary layer separation and/or the structure of shear layer(s) in the wake and various
methods like blowing, suction, surface roughness elements, etc., have been studied by re-
searchers in the past. Review articles by Gad-el-Hak and Bushnel [1], Griffin and Hall [2], and
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Zdravkovich [3] present a fairly comprehensive overview of the various means for suppressing
vortex shedding. Zdravkovich [3] presents control techniques that can be classified into three
categories: surface protrusions, shrouds, and near-wake stabilizers. He also investigated the
relative effectiveness of the various means of flow control by applying them to the same test
model, including the multi-cylinder arrangement. Griffin and Hall [2] summarize the possible
modification of the wake of a cylinder by its oscillatory motion. More details on the effect of
the translational oscillations can be found in the work by Williamson and Roshko [4], Ongoren
and Rockwell [5,6], Lecointe et al. [7], and Mittal and Tezduyar [8]. Tokumaru and Dimotakis
[9,10] have demonstrated via laboratory experiments that a significant control on the structure
of the wake can be achieved by subjecting the cylinder to rotary oscillations. Gad-el-Hak and
Bushnel [1] review various techniques that are employed for separation control, including the
moving-surface boundary layer control in which rotating cylinder elements are employed to
inject momentum into the already existing boundary layer. Modi et al. [11-13] have employed
this concept to increase the maximum lift on airfoils and to reduce the drag on bluff bodies.
Preliminary finite element simulations supporting these observations have been presented by
Mittal [14].

In an effort to study a passive control device, Strykowski and Sreenivasan [15] have reported
that the vortex shedding past a circular cylinder can be controlled over a limited range by the
proper placement of a (smaller) control cylinder close to the main cylinder. They have
conducted a fairly comprehensive investigation, using laboratory experiments to study the
effect of the size and position of the control cylinder on the behavior of the vortex shedding
from the main cylinder. They found that there exists a domain close to the main cylinder where
the placement of a control cylinder can completely suppress the vortex shedding for flows at
a Reynolds number of 80 or less. The actual extent of this domain depends on the Reynolds
number of the flow and the ratio of the diameter of the two cylinders. Even though the flow
remains unsteady for Reynolds numbers larger than 80, the presence of the control cylinder
has a significant effect on the flow. It has also been reported that in certain cases suppression
of vortex shedding is accompanied by a significant reduction in the mean drag coefficient.

Kim and Chang [16] have reported their computational results for the same phenomenon
using a mixed finite element method—finite difference method (FEM—-FDM) technique applied
to the vorticity—streamfunction form of the Navier—Stokes equations. Recently, Morzynski et
al. [17] have applied their eigensolution method for the global non-parallel flow stability
analysis to this problem and have computed the critical Reynolds number for instability for
certain location of the control cylinder. Their observations are in very good agreement with the
experimental results. Flow past two cylinders of equal diameters has been studied extensively
by researchers in the past [18—25]. Such flows are quite sensitive to the relative location of the
two cylinders and the Reynolds numbers. It has been reported by Mittal et al. [25] that for two
cylinders arranged in tandem, with a distance of 2.5 diameters between their centers, the flow
is steady at Reynolds numbers = 100. However, it becomes unsteady at Reynolds numbers =
1000. Wu and Hu [26] have investigated numerically the flow past two tandem cylinders of
unequal diameters for Reynolds number =200 based on the diameter of the larger, down-
stream cylinder. They have observed that a reduction in the diameter of the upstream cylinder
leads to a decrease in the critical spacing between the two cylinders beyond which vortex
shedding takes place behind both cylinders.
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In this article, results are presented for numerical computations of some of the cases
reported by Strykowski and Sreenivasan [15]. The numerical method that has been employed
is same as the one used by Mittal et al. [25] to compute flow past two cylinders of equal
diameter in staggered and tandem arrangements at Reynolds numbers = 100 and 1000. First,
flow past a single cylinder at Reynolds numbers = 60, 70, 80, and 100 is computed and results
are compared with those from experiments by other researchers. Next, computations are
carried out with a control cylinder, one-seventh the diameter of the main one, located five
diameters away, each in the transverse and in-line directions, from the main cylinder. For this
arrangement, the effect of the control cylinder on the flow past the main cylinder is expected
be negligible. However, the interest here is to study the effect of the unsteady wake of the main
cylinder on the control cylinder. In the second set of computations, the control cylinder is
placed such that the in-line and cross-flow distances from the main cylinder are two and one
cylinder diameters respectively. Strykowski and Sreenivasan [15] have observed that this
location of the control cylinder lies marginally outside the region within which the placement
of control cylinder results in a complete suppression of the vortex shedding for Reynolds
number = 80. The present computations also led to the same observations. The final set of
computations correspond to a location of the control cylinder for which Strykowski and
Sreenivasan [15] have observed a complete suppression of vortex shedding for Reynolds
number = 80. In this arrangement, the in-line location of the control cylinder remains the same
as before while the cross-flow distance between the two cylinders is reduced to 0.8 diameters.

In an effort to explain the mechanism of control of vortex shedding, the streamwise
variation of the pressure coefficient close to the shear layer of the main cylinder is compared
for various cases, with and without the control cylinder. It is observed that in certain cases the
control cylinder provides a local favorable pressure gradient in the wake region, thereby
stabilizing the shear layer locally. Depending on the magnitude of the favorable pressure
gradient, one observes a varied level of unsteadiness/instability of the wake for different cases.

The outline of the rest of the paper is as follows. We begin by reviewing the governing
equations for incompressible fluid flow in Section 2. The streamline-upwind/Petrov—Galerkin
(SUPGQG) and pressure-stabilizing/Petrov—Galerkin (PSPG) stabilization techniques [27—-29] are
employed to stabilize our computations against spurious numerical oscillations and to enable
us to use equal-order interpolation velocity—pressure elements. Section 3 describes the finite
element formulation incorporating these stabilizing terms. In Section 4 computational results
for flows involving a single cylinder and control cylinder are presented and discussed. In
Section 5 the results are summarized and a few concluding remarks are made.

2. THE GOVERNING EQUATIONS

Let Q= R™ and (0, T) be the spatial and temporal domains respectively, where ng is the
number of space dimensions, and let I denote the boundary of Q. The spatial and temporal
co-ordinates are denoted by x and ¢. The Navier—Stokes equations governing incompressible
fluid flow are
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d
p(al;+u-vu—f>—V-a=0 on Q for (0, T) W
V-u=0 on Q for (0, T) v

Here p, u, f, and ¢ are the density, velocity, body force, and the stress tensor respectively. The
stress tensor is written as the sum of its isotropic and deviatoric parts

o= —pIl+T, T=2ue(u), &(u)= % ((Vu) + (Vu)7) 3)

where p and u are the pressure and viscosity respectively. Both the Dirichlet and Neumann-
type boundary conditions are accounted for, represented as

u=g onl n‘e=h onTl, 4)

g’
where I', and I', are complementary subsets of the boundary I'. The initial condition on the
velocity is specified on Q

u(x,0)=u, on Q (5)

where u, is divergence free.

3. FINITE ELEMENT FORMULATION

Consider a finite element discretization of Q into sub-domains Q¢, e=1, 2, ..., n,, where ng
is the number of elements. Based on this discretization, for velocity and pressure we define the
finite element trial function spaces ¥ and %%, and weighting function spaces 7"} and 77}
These function spaces are selected by taking the Dirichlet boundary conditions into account as
subsets of [H*(Q)]"* and H'/(Q), where H'(Q) is the finite-dimensional function space over Q.
The stabilized finite element formulation of Equations (1) and (2) is written as follows:

find w'e ¥, and p”e ¥’ such that Yw'e 7, q"e ™

a h
jw”-p(u—l—u”-Vu”—f) dQ+J eW'): o (p", ') dQ+J ¢"V-u" dQ
Q Q Q

ot
S 1 v h L B
+ Z ;(TSUPGIO“ VW' + 1p5p6VG ") | p W-f—ll ‘Vu'—f | —V-o(p”,u") | dQ°
e=1 JQe
el
+ ) j 5V'w”pV-u”dQ"=J w-h" dTI' 6)
e=1 © Iy,

In the variational formulation given by Equation (6), the first three terms and the right-hand
side constitute the Galerkin formulation of the problem. The first series of element-level
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integrals are the SUPG and PSPG stabilization terms added to the variational formulations
[27,30]. In the current formulation, tpgpg 1S the same as 7gypg and is given as

()

The second series of element-level integrals are added to the formulation for numerical
stability at high Reynolds numbers. This is a least-squares term based on the continuity
equation. The coefficient J is defined as

J
5= % oz )
where
R
< e”> Re, <3
z=4q\3 ©)
1 Re, >3

and Re, is the cell Reynolds number. Both stabilization terms are weighted residuals and
therefore maintain the consistency of the formulation.

4. NUMERICAL SIMULATIONS

All computations reported in this article are carried out on the Digital workstations at IIT
Kanpur. Equal-in-order bilinear basis functions for velocity and pressure and used and a 2 x 2
Gaussian quadrature is employed for numerical integration. The non-linear equation systems
resulting from the finite element discretization of the flow equations are solved using the
Generalized Minimal RESidual (GMRES) technique [31] in conjunction with diagonal precon-
ditioners. The diameter of the main cylinder is D, while that of the control cylinder is D,. All
results presented in this article involving the control cylinder are with D,/D, = 7. Experimental
results for this case have been reported by Strykowski and Sreenivasan [15]. In the present
calculation, the two cylinders reside in a rectangular domain whose upstream and downstream
boundaries are located at five and 15 cylinder diameters respectively from the center of the
main cylinder. The upper and lower boundaries are placed at five diameters, each from the
center of the main cylinder. The no-slip condition is specified for the velocity on the cylinder
wall and free stream values are assigned or the velocity at the upstream boundary. At the
downstream boundary we specify a Neumann-type boundary condition for the velocity, which
corresponds to zero viscous stress vector. On the upper and lower boundaries, the component
of velocity normal to and the component of stress vector along these boundaries is prescribed
a zero value. The Reynolds number is based on the diameter of the main cylinder (D,), free
stream velocity, and the viscosity of the fluid. Computations are carried out for various relative
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locations of the two cylinders. The non-dimensional distance between the centers of the two
cylinders is denoted by P/D, in the flow direction and by 7'/D, in the cross-flow direction, as
shown in Figure 1. All values for the lift and drag coefficients and the Strouhal number
reported in this article have been non-dimensionalized with respect to the diameter of the main
cylinder (D;). In the presentation of results, quantities with subscript ‘1’ refer to the main
cylinder while ones with 2’ correspond to the control cylinder. All the values for the Strouhal
number correspond to the variation of the lift coefficient.

Strykowski and Sreenivasan [15] have conducted laboratory experiments to study the effect
of the size and location of the control cylinder on the behavior of the vortex shedding from the
main cylinder. As a result of their comprehensive study they have been able to determine, for
various values of D,/D,, the regions where the placement of a control cylinder can completely
suppress the vortex shedding for flows at Reynolds number = 80. In this paper, results are
reported for three locations of the control cylinder for various Reynolds numbers. To clearly
show the effect of the control cylinder, results are compared with those for flow past a single
cylinder at corresponding Reynolds numbers. The first computation involving the main and
control cylinders corresponds to P/D =5 and 7T/D = 5. In this arrangement, the effect of the
control cylinder on the flow past the main cylinder is expected be negligible. However, the flow
past the control cylinder is affected by the unsteady wake of the main cylinder. In the second
set of computations, the main and control cylinder locations correspond to P/D =2 and
T/D =1, while the final ones are for P/D =2 and 7/D = 0.8. For the single cylinder cases and
for the cases corresponding to P/D =5 and T/D =5, the upstream and lateral boundaries of
the computational domain are located at eight diameters each, while the downstream boundary
is located at 22.5 diameters from the center of the main cylinder. The finite element mesh
employed for the computation of the P/D =2 and T/D = 0.8 case is show in Figure 2. This
mesh is very typical of the ones used for other cases reported in this article. In all the cases,
first the steady state solution is computed for flow past a cylinder at Re = 100. This solution
is then perturbed by applying, on the main cylinder, a belt-type boundary condition, which
consists of a set of counterclockwise and clockwise rotations. Computations are carried out
until a periodic solution develops. The unsteady solution at Re =100 is used as an initial
condition to compute flows at other Reynolds numbers.

4.1. Flow past a single cylinder

To understand the effect of placing a control cylinder in the flow field it is essential to first
study flow past a single cylinder without a control cylinder. Flow past a circular cylinder at

. o

¢=D,

P——>
Figure 1. Description of the relative location of the main and control cylinders.
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o

Figure 2. Flow past main and control cylinders, P/D =2, T/D =0.8: finite element mesh (and its
close-up) with 10076 nodes and 9816 elements.

Re =100 has become a standard benchmark problem and various researchers in the past have
reported their computed results, which are in good agreement with experimental observations
[27,30,32,33]. In the paper, results are reported for flow past a single cylinder at Re = 100, 80,
70, and 60. The finite element mesh consists of 4209 nodes and 4060 quardrilateral elements.
Figure 3 shows the time histories of the lift and drag coefficients for the temporally periodic
flows at various Reynolds numbers. For flow at Re = 100, the Strouhal number corresponding
to the dominant frequency of the lift variations is 0.168, the mean drag coefficient is 1.402, and
the amplitude of the lift coefficient is 0.355. These values are in good agreement with those
reported elsewhere [27,30,32,33]. From Figure 3 it can be observed that as the Reynolds
number is increased, the mean drag coefficient decreases while its time varying component
increases. The Strouhal number also increases with the Reynolds number. Table I lists the
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Figure 3. Flow past a single cylinder, Re = 100, 80, 70, 60: time histories of the lift and drag coefficients
for the temporally periodic solutions.

Table I. Comparison of the computed and experimentally measured values of Strouhal
number for flow past a circular cylinder.

Re St (present St (experiments [34]
computations) St=0.21(1—-20/Re)
60 0.142 0.140
70 0.151 0.150
80 0.158 0.158
100 0.168 0.168
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Strouhal numbers for various Reynolds numbers from the present computations and from
measurements from laboratory experiments [34]. The agreement between the two sets of value
is quite good.

Figures 4—7 show, respectively for Re =100, 80, 70, and 60, the pressure, streamfunction,
and vorticity fields for the temporally periodic solution corresponding to the peak value of the
life coefficient. One can observe the well-developed von Karman vortex street in all the
solutions and that the unsteadiness in the flow increases with Reynolds number. The same
observation can be made by comparing, for different Reynolds numbers, the amplitudes of the
lift coefficient and the unsteady component of drag coefficient (see Figure 3).

42.P/D=5T/D=5

When the control cylinder is located far away from the main cylinder, it is expected that the
control cylinder has little effect on the main cylinder. Figure 8 shows the pressure, streamfunc-
tion, and vorticity fields for the temporally periodic solution corresponding to the peak value
of the lift coefficient for the Re =100 flow. Time histories of the drag and lift coefficients for
both the main and control cylinders are shown in Figure 9. It can be observed that the flow
close to the main cylinder is same as that for a single cylinder, as expected. However, flow in
the vicinity of the control cylinder is significantly affected by the unsteady wake of the main
cylinder as a result of which the control cylinder experiences unsteady fluid dynamic forces.
The Strouhal number corresponding to the variation of lift coefficient for the control cylinder

Figure 4. Re =100 flow past a single cylinder: pressure, streamfunction, and vorticity fields for the
temporally periodic solution corresponding to the peak value of the lift coefficient.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 421-447
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Figure 5. Re=80 flow past a single cylinder: pressure, streamfunction, and vorticity fields for the
temporally periodic solution corresponding to the peak value of the lift coefficient.

is the same as that for the main cylinder. However, it must be noticed that there is no vortex
shedding past the control cylinder. The Reynolds number based on the free stream speed and
the diameter of the control cylinder is 14.3. This is far less than the critical Reynolds number
beyond which the shedding takes place for flow past a circular cylinder.

43.P/D=2,T/D=1

According to the results reported by Strykowski and Sreenivasan [15], this location of the
control cylinder lies marginally outside the region within which the placement of the control
cylinder results in a complete suppression of the vortex shedding or Re = 80. The computations
are first carried out for Re = 100 flow. When the fully developed temporally periodic solution
is realized, the Reynolds number is changed to 80. Figure 10 shows the pressure, streamfunc-
tion, and vorticity fields for the temporally periodic solution corresponding to the peak value
of the lift coefficient for the Re = 100 flow. Time histories of the drag and lift coefficients for
both the main and control cylinders are shown in Figure 11. Compared with the single cylinder
case, the Strouhal number for the present case is marginally higher, while the amplitude of the
lift coefficient and the mean drag coefficients are lower. From the flow pictures it can be
observed that the vortex shedding from the lower surface of the main cylinder, in the presence
of control cylinder, is quite similar to that for single cylinder. However, significant interaction
takes place between the control cylinder and the vortices formed at the upper surface of the
main cylinder. The unsteadiness of the flow on the upper surface of the main cylinder is
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Figure 6. Re =70 flow past a single cylinder: pressure, streamfunction, and vorticity fields for the
temporally periodic solution corresponding to the peak value of the lift coefficient.

significantly less than that at the lower surface. Consequently, unlike the single cylinder case,
the drag coefficient for the main cylinder in the present case oscillates with the same frequency
as the lift coefficient.

When the unsteady flow at Re =100 attains a fully developed state, the Reynolds number
is abruptly changed to 80. The solution at Re = 80 is shown in Figures 12 and 13. As reported
by Strykowski and Sreenivasan [15], the flow at Re = 80 is unsteady. Flows for Re =70 and 60
are computed in the same manner by an abrupt decrease in the Reynolds number. The solution
corresponding to Re =70 is shown in Figures 14 and 15, while that for Re =60 is shown in
Figures 16 and 17. It can be observed that the unsteadiness in the flow decreases as the
Reynolds number is reduced and finally at Re = 60, the flow reaches a steady state. It should
be noticed that the initial condition for the computation at Re =60 is an unsteady solution.
Therefore, in that sense the present solution at Re =060 is stable for reasonably large
perturbations. Recall the flow past a single cylinder at Re = 60 is unsteady for similar levels of
perturbations to the initial steady solution (see Figures 3 and 7). Therefore, the stability of the
present solution can be attributed to the presence of control cylinder. It is interesting to
observe that the Re =60 flow past a cylinder becomes stable in the presence of a ‘control’
cylinder even though this geometry is inherently asymmetric. At a later stage in this paper, a
possible explanation for this stabilization of flow rendered by the control cylinder will be
discussed.
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Figure 7. Re =060 flow past a single cylinder: pressure, streamfunction, and vorticity fields for the
temporally periodic solution corresponding to the peak value of the lift coefficient.

44. P/D=2 T/D=0.8

For this arrangement of the main and control cylinders, Strykowski and Sreenivasan [15]
report that the vortex shedding for Re =80 is completely suppressed. Computations are first
carried out for Re =100 flow. Figure 18 shows the pressure, streamfunction, and vorticity
fields for the temporally periodic solution corresponding to the peak value of the lift coefficient
for the Re =100 flow. Time histories of the drag and lift coefficients for both the main and
control cylinders are shown in Figure 19. Compared with the single cylinder case and with the
case in the previous section for 7'/D = 1.0, the unsteadiness in the flow for the present case is
at a lower level, which is indicated by lower values of the Strouhal number, amplitude of the
unsteady lift coefficient, and the mean drag coefficient.

The fully developed unsteady flow at Re =100 is used as an initial condition to compute
flow at Re =80. In accordance with the observations of Strykowski and Sreenivasan [15], the
present computations reveal that the flow at Re =80 attains a steady state. The steady state
pressure, streamfunction, and vorticity fields at Re =80 are shown in Figure 20. The time
histories of the drag and lift coefficients for the two cylinders are shown in Figure 21. The
steady state drag coefficient of the main cylinder is lower than the mean drag coefficient for
a single cylinder at Re = 80. However, it is accompanied by an additional drag acting on the
control cylinder. Therefore, the unsteadiness in the flow past a cylinder at Re =80 can be
eliminated completely by placing a control cylinder at the current position but at the expense
of increased drag coefficient for the two-cylinder system. Strykowski and Sreenivasan [15] have
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Figure 8. Re =100 flow past main and control cylinders, P/D =5, T/D =5: pressure, streamfunction,

and vorticity fields for the temporally periodic solution corresponding to

the peak value of the lift

coefficient.
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Figure 9. Re =100 flow past main and control cylinders, P/D =35, T/D = 5:

time histories of the drag

and lift coefficients for the main and control cylinders.
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Figure 10. Re =100 flow past main and control cylinders, P/D =2, T/D = 1: pressure, streamfunction,
and vorticity fields for the temporally periodic solution corresponding to the peak value of the lift
coefficient.
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Figure 11. Re =100 flow past main and control cylinders, P/D =2, T/D = 1: time histories of the drag
and lift coefficients for the main and control cylinders.
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Figure 12. Re =280 flow past main and control cylinders, P/D =2, T/D = 1: pressure, streamfunction,
and vorticity fields for the temporally periodic solution corresponding to the peak value of the lift

coefficient.
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Figure 13. Re =80 flow past main and control cylinders, P/D =2, T/D = 1: time histories of the drag
and lift coefficients for the main and control cylinders.
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Figure 14. Re =70 flow past main and control cylinders, P/D =2, T/D = 1. pressure, streamfunction,
and vorticity fields for the temporally periodic solution corresponding to the peak value of the lift
coefficient.
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Figure 15. Re =70 flow past main and control cylinders, P/D =2, T/D = 1: time histories of the drag
and lift coefficients for the main and control cylinders.
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&=

Figure 16. Re =60 flow past main and control cylinders, P/D =2, T/D = 1. pressure, streamfunction,
and vorticity fields for the steady state solution.
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Figure 17. Re =60 flow past main and control cylinders, P/D =2, T/D = 1: time histories of the drag
and lift coefficients for the main and control cylinders.

observed that it is possible to find an optimal location for the control cylinder such that

suppression of vortex shedding at Re = 80 leads to about 20 per cent reduction in drag. Figure
22 shows the pressure and vorticity fields at various time instants of this simulation. It can be
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Figure 18. Re =100 flow past main and control cylinders, P/D =2, T/D = 0.8: pressure, streamfunction,
and vorticity fields for the temporally periodic solution corresponding to the peak value of the lift

coefficient.
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Figure 19. Re =100 flow past main and control cylinders, P/D =2, T/D = 0.8: time histories of the drag
and lift coefficients for the main and control cylinders.
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Figure 20. Re =80 flow past main and control cylinders, P/D =2, T/D = 0.8: pressure, streamfunction,
and vorticity fields for the steady state solution.
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Figure 21. Re =80 flow past main and control cylinders, P/D =2, T/D = 0.8: time histories of the drag
and lift coefficients for the main and control cylinders.
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Figure 22. Re =80 flow past main and control cylinders, P/D =2, T/D =0.8: pressure and vorticity
fields at =0, 150, 300, 450, 600, 750, 900.
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noticed that the stabilization of the flow begins close to the cylinders and then propagates
downstream. This observation is in quite contrast to the start-up of flow past a single cylinder,
where flow instability first develops downstream in the wake and then propagates upstream
close to the cylinder. On comparing Figures 12 and 20 it can be observed that for the present
case, the control cylinder causes the flow to deflect more towards the cylinder centerline.
Similar observations were made by Strykowski and Sreenivasan [15].

To understand the effect of the placement of the control cylinder, the pressure coefficient
(C,) is plotted along the flow direction at a y location close to the shear layer of the main
cylinder. This is done by projecting the finite element solution for the pressure field, computed
on a mesh similar to the one shown in Figure 2, on a set of points taken at a section
corresponding to y/D = 0.65 (y is measured with respect to the center of the cylinder). Figure
23 shows the variation of the pressure coefficient along the flow direction at y/D = 0.65 for
various cylinder arrangements at Re = 100. From this figure it can be observed that the single
cylinder case and the case involving the main and control cylinders with P/D =5 and T/D =5
give quite similar C, distribution, as expected. One can observe a rise in pressure near the nose
region of the cylinder, followed by a favorable pressure gradient as the flow accelerates over
the windward side of the cylinder. The spatial variation in the pressure distribution in the wake
caused by the vortex shedding can also be observed in the figure. For the control cylinder
location corresponding to P/D=2, T/D=1.0 one can notice a change in the pressure
distribution caused by the presence of control cylinder. This change is amplified for the case
corresponding to P/D =2, T/D =0.8. For the Re =100 case, the control cylinder seems to
provide a local favorable pressure gradient in the wake, thereby stabilizing the shear layer
locally. However, this effect is very local in nature and it can be observed that within about ten
diameters downstream of the main cylinder the pressure distribution close to the shear layer
assumes a similar form as that for a single cylinder. The drag—lift polars for all the cases for
Re =100 are shown in Figure 24. As has been observed before, the control cylinder causes a
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Figure 23. Streamwise variation of the pressure coefficient at y/D = 0.65 for Re = 100 flow for various
arrangements of the main and control cylinders.
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Figure 24. Drag-lift polars for the fully developed Re = 100 flow for various arrangements of the main
and control cylinders.

marginal reduction in the amplitude of unsteady forces felt by the main cylinder. Additionally,
in the presence of a control cylinder, the drag force acting on the main cylinder oscillates with
the same frequency as the lift force. This effect of reduction in the frequency of the on-line
force by a factor of two, may be of some significance in the context of civil structures where
the failure due to fatigue loading is an important design criterion.

Shown in Figure 25 is the variation of the pressure coefficient along the flow direction at
y/D = 0.65 for various cylinder arrangements at Re =80. As has been seen for the Re =100
case, in this case it can also be observed that the presence of a control cylinder leads to a local
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Figure 25. Streamwise variation of the pressure coefficient at y/D = 0.65 for Re =80 flow for various
arrangements of the main and control cylinders.
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favorable pressure gradient that stabilizes the shear layer. The extent to which the shear layer
is stabilized depends on the magnitude of the favorable pressure gradient created by the
control cylinder. In the present case, the location of the control cylinder corresponding to
P/D=2, T/D=0.8 leads to a complete suppression of the vortex shedding. However, from
Figure 25 it can be observed that even for this case, the effect of the control cylinder on the
pressure distribution reduces as one goes downstream of the cylinders. It is quite possible that
if the computational domain in the present case is extended further downstream, the shear
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Figure 26. Drag-lift polars for the fully developed Re =80 flow for various arrangements of the main
and control cylinders.
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Figure 27. Streamwise variation of the pressure coefficient at y/D = 0.65 for Re =70 flow for various
arrangements of the main and control cylinders.
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Figure 28. Drag-lift polars for the fully developed Re =70 flow for various arrangements of the main
and control cylinders.
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Figure 29. Streamwise variation of the pressure coefficient at y/D = 0.65 for Re =60 flow for various
arrangements of the main and control cylinders.

layer in the extended domain may become unstable and cause the flow to become unsteady. In
fact, the flow visualization picture (Figure 3) in the article by Strykowski and Sreenivasan [15]
shows a similar behavior. Figure 26 shows the drag-lift polars for all the cases that have been
computed for Re = 80. The case corresponding to P/D =2, T/D = 0.8, which leads to complete
suppression of vortex shedding appears as a point on the drag—lift polar diagram. Figures 27
and 28 show respectively, the streamwise C, distribution and drag-lift polars for Re = 70 flows
while Figures 29 and 30 show results for Re =60 flows.
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Figure 30. Drag-lift polars for the fully developed Re =60 flow for various arrangements of the main
and control cylinders.

5. CONCLUDING REMARKS

A numerical study has been carried out to study the effect of the placement of a control
cylinder in the near wake of the main cylinder for flows at low Reynolds numbers. Results are
compared with those from flow past a single cylinder at the corresponding Reynolds numbers.
Excellent agreement is observed between the present computations and experimental findings
of other researchers. It is seen that the proper placement of the control cylinder can lead to a
complete suppression of the vortex-shedding behind the main cylinder. Even for the cases,
where the complete suppression of unsteadiness does not take place, the control cylinder
affects the flow past the main cylinder significantly. For example, the amplitude of the time
varying forces is reduced and the drag coefficient oscillates at the same frequency as the lift
coefficient for the main cylinder. The streamwise variation of the pressure coefficient is studies
close to the shear layer of the main cylinder in order to investigate the cause of this
phenomenon of flow control. It is observed that the control cylinder provides a local favorable
pressure gradient in the wake region thereby stabilizing the shear layer locally. In certain cases,
this favorable pressure gradient is quite weak and therefore, compared with the flow past a
single cylinder, the destabilization of the shear layer is deferred to a small distance down-
stream. When the positioning of the control cylinder is such that the magnitude of the
favorable pressure gradient is large, then the shear layer is rendered stable to a fairly large
distance downstream of the cylinders. Locally, close to the cylinder, for such cases one sees a
complete suppression of the vortex shedding. However, it is to be noted that this method of
passive flow control is effective for small Reynolds number only. For practical applications, a
control method that is effective at high Reynolds number needs to be studied. An effort to
investigate the effect of rotating control cylinders, that inject momentum in the wake of the
main cylinder, is underway. Our preliminary computations for Reynolds number = 10* indicate
the technique to be very effective in reducing the drag on the cylinder. At high Reynolds
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numbers, the three-dimensional effects in the flow become significant and it is suggested that
three-dimensional simulations be carried out.
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